AMCA titulo


Prof. Vadim Ivanovich Utkin

The Ohio State University, Columbus, Ohio, USA

Prof. Utkin



The conventional existence-uniqueness theorems are not applicable for differential equations  with right hand sides as discontinuous state functions. This is the case for the systems with  discontinuous controls and sliding modes, when state trajectories belong to discontinuity  surfaces. Many authors offered their methods of deriving sliding mode equations, or solution  continuations on the discontinuity surfaces Due to uncertainties of right hand sides of the original  equations the proposed methods led to different solutions. These methods are compared, the  reasons of ambiguity are discussed in the paper. It is assumed that any solutions is under the  umbrella of the method proposed by A.F. Filippov.

Bio: Vadim Ivanovich Utkin es ampliamente reconocido por ser co-creador de los conceptos de las matemáticas aplicadas Sistemas de Estructura Variable y Control por Modos Deslizantes. Es profesor del Departamento de Ingeniería Mecánica y Eléctrica en la Universidad Estatal de Ohio, Estados Unidos desde 2002. Se graduó como ingeniero en 1960 por el Instituto de Sistemas de Potencia de Moscú, Rusia; más tarde se doctoró en ciencias en 1971 por el Instituto de Ciencias de Control de la antigua Unión de Repúblicas Socialistas Soviéticas (URSS), en el que fue de 1973 a 1994 director del Laboratorio de Sistemas de Control Discontinuo. En 1972 recibió el Premio Lenin, el más alto galardón científico que otorgaba la Unión Soviética. Es doctor Honoris Causa por la Universidad de Sarajevo (1978) y la Universidad Rovira i Virgili de España (2011). Ha recibido la medalla Oldenburger de ASME (2003) y el Premio Humboldt de Alemania (2005). Asimismo, es Fellow de IEEE, miembro de la Academia de Ciencias y Artes de Bosnia y Herzegovina (2008) y de la Academia Mexicana de Ciencias (2016). Las aportaciones teóricas del Profesor Utkin han servido en la automatización de procesos, regulación de motores eléctricos, control de vehículos eléctricos e híbridos, y control de manipuladores robóticos en las industrias de la metalurgia, automotriz, petróleo y petroquímica. Su trabajo ha dado también frutos en control de sistemas electromecánicos. Es autor de cinco libros y más de 300 artículos en revistas especializadas y es miembro del staff editorial de The International Journal of Control.

Prof. Shankar P. Bhattacharyya

Electrical Engineering Department
Texas A&M University, USA

Prof Bhatacharryya



This lecture will first describe historical reasons for the recent resurgence of interest in classical controllers. The latter class of controllers are the Proportional-Integral-Derivative (PID) controllers and the First Order (FO)  controllers also known as Lag-Lead controllers and Three Term Controllers. It  turns out that it is this class of controllers, and not high order modern controllers  that account for 99% of controllers in use in diverse industries such as Motion  Control, Process Control, Robotics, Aerospace Controls and Biomedical  Engineering and in new Technologies such as driverless cars, multiagent  systems and UAV's.

Therefore any progress in design theory for such controllers should have a significant impact on the Control industry. Our emphasis will be on Computer Aided automated procedures for the design of classical controllers to satisfy multiple specifications. The key result facilitating such an approach is our calculation of the stabilizing set of such controllers. With this set in hand we can construct achievable design surfaces in the space of gain margin, phase margin and bandwidth. These surfaces have the property that each point on this surface can be attained by at least one controller of the specified class. The last part of the lecture will show how these single-input single-output results can be extended to multivariable systems.

Bio: S.P.Bhattacharyya was educated at IIT Bombay and Rice University. His contributions  to Control Theory include the first solution of the servomechanism problem, a  numerically eficient pole assignment algorithm, a generalization of Kharitonov’s theorem, a new approach to PID controllers, the demonstration of the fragiity of high order controllers and a measurement based approach to linear systems. He is an IEEE fellow, an IFAC Fellow and an elected Foreign Member of the Brazilian Academy of Sciences and the Brazilian Academy of Engineering

Prof. Lucy Pao

Electrical, Computer, and Energy Engineering Department
University of Colorado Boulder, Colorado USA

Prof. Pao



Wind energy is recognized worldwide as cost-effective and environmentally friendly and is among the world's fastest-growing sources of electrical energy. Despite the amazing growth in  global wind power installations over the last decade, science and engineering challenges still exist.  For instance, since electrical power supply and demand must match on the grid to maintain grid reliability, the variability of generated wind power creates challenges to integrating large amounts  of wind energy on the utility grid. Recently, research utilizing systems and control techniques has  begun to demonstrate that it is possible to actively control the power generated by wind turbines and wind farms to help stabilize the grid frequency. In this talk, we will first provide an overview of  wind energy systems by introducing the primary structural components and operating regions of  wind turbines. The operation of the utility grid will be briefly reviewed by discussing the electrical  system, explaining the importance of preserving grid reliability through controlling the grid  frequency (which is a measure of the balance between electrical generation and load), and  describing the traditional methods of providing ancillary services for frequency support using conventional generation utilities. We will then outline how wind turbines and wind farms can be  controlled to help stabilize and balance the frequency of the utility grid. Results of simulation  studies as well as experimental field tests will be presented to show the promise of the techniques  being developed. We shall close by discussing continuing challenges and on-going and future  research avenues that can further facilitate the growth of wind energy.

Bio: Lucy Pao is a Professor in the Electrical, Computer, and Energy Engineering Department at the  University of Colorado Boulder in the USA. She has completed sabbaticals at Harvard University  (2001-2002), the University of California, Berkeley (2008), the US National Renewable Energy  Laboratory (2009), the Hanse-Wissenschaftskolleg Institute for Advanced Study in Delmenhorst,  Germany (2016-2017) and the ForWind Center for Wind Energy Research at Oldenburg University  (2016-2017). She earned B.S., M.S., and Ph.D. degrees in Electrical Engineering from Stanford  University. Her research has primarily focused on  combined feedforward and feedback control of  flexible structures, with applications ranging from atomic force microscopy to disk drives to digital  tape drives to megawatt wind turbines and wind farms. She is a Fellow of the International  Federation of Automatic Control (IFAC) and the Institute of Electrical and Electronics Engineers  (IEEE). Selected recent awards include the 2012 IEEE Control Systems Magazine Outstanding Paper  Award (with K. Johnson), the 2015 Society for Industrial and Applied Mathematics (SIAM) Journal  on Control and Optimization Best Paper Prize (with J. Marden and H. P. Young), the 2017 Control  Engineering Practice Award from the American Automatic Control Council, and the Scientific Award  2017 from the European Academy of Wind Energy. Selected professional society activities include  being a Fellow of the Renewable and Sustainable Energy Institute (2009-present), General Chair of  the 2013 American Control Conference, member of the IEEE Control Systems Society (CSS) Board of  Governors (2011-2013 and 2015), IEEE CSS Fellow Nominations Chair (2016-present), and  member of the IFAC Executive Board (2017-2020).

Prof. Oussama Khatib

Robotics Laboratory, Department of Computer Science
Stanford University, Stanford, California, U.S.A.

Prof. Khatib

Abstract :

The promise of oceanic discovery has intrigued scientists and explorers for centuries,  whether to study underwater ecology and climate change, or to uncover natural  resources and historic secrets buried deep at archaeological sites. The quest to  explore the ocean requires skilled human access. Reaching these depth is  imperative since factors such as pollution and deep-sea trawling increasingly   threaten ecology and archaeological sites. These needs demand a system deploying  human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are  inadequate for the task. A robotic avatar could go where humans cannot, while  embodying human intelligence and intentions through immersive interfaces. To meet  the challenge of dexterous operation at oceanic depths, in collaboration with  KAUST's Red Sea Research Center and MEKA Robotics, we developed Ocean One, a bimanual force-controlled humanoid robot that brings immediate and intuitive  haptic interaction to oceanic environments. Teaming with the French Ministry of  Culture’s Underwater Archaeology Research Department, we deployed Ocean One in an expedition in the Mediterranean to Louis XIV’s flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a human’s presence at the seabed. This expedition demonstrated synergistic collaboration between a robot and a human operating over challenging manipulation tasks in an inhospitable environment. Tasks such as coralreef monitoring, underwater pipeline maintenance, and offshore and marine operations will greatly benefit from such robot capabilities. Ocean One’s journey in  the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean One’s ability to distance  humans physically from dangerous and unreachable work spaces while connecting  their skills, intuition, and experience to the task promises to fundamentally alter  remote work. We foresee that robotic avatars will search for and acquire materials in  hazardous and inhospitable settings, support equipment at remote sites, build infrastructure for monitoring the environment, and perform disaster prevention and recovery operations— be it deep in oceans and mines, at mountain tops, or in space

Bio: Oussama Khatib received his Doctorate degree in Electrical Engineering from Sup’Aero, Toulouse, France, in 1980. He is Professor of Computer Science at Stanford University. His work on advanced robotics focuses on methodologies and technologies in human-centered robotics including humanoid control architectures, human motion synthesis, interactive dynamic simulation, haptics, and human- friendly robot design. He is Co-Editor of the Springer Tracts in Advanced Robotics series, and has served on the Editorial Boards of several journals as well as the Chair or Co-Chair of numerous international conferences. He co-edited the Springer Handbook of Robotics, which received the PROSE Award. He is a Fellow of IEEE and has served as a Distinguished Lecturer. He is the President of the International Foundation of Robotics Research (IFRR). Professor Khatib is a recipient of the Japan Robot Association (JARA) Award in Research and Development. In 2010 he received the IEEE RAS Pioneer Award in Robotics and Automation for his fundamental pioneering contributions in robotics research, visionary leadership, and life-long commitment to the field. Professor Khatib received the 2013 IEEE RAS Distinguished Service Award in recognition of his vision and leadership for the Robotics and Automation Society, in establishing and sustaining conferences in robotics and related areas, publishing influential monographs and handbooks and training and mentoring the next generation of leaders in robotics education and research. In 2014, Professor Khatib received the 2014 IEEE RAS George Saridis Leadership Award in Robotics and Automation.

Prof. Arturo Zavala Rio

Prof. Zavala


La estabilidad en tiempo finito en ausencia de discontinuidades es un tópico que ha llamado la atención en los últimos años. Cuando se está acostumbrado a considerar las condiciones de regularidad comúnmente atribuidas en la literatura a los sistemas en estudio, hablar de estabilización en tiempo finito a través de controles continuos resulta intrigante. Como era de esperarse, un marco analítico adecuado ha debido desarrollarse para dar soporte a tal tipo de aplicaciones. Comenzaremos por repasar las bases de acuerdo a la visión de los autores que las han estado estableciendo. Repasaremos las caracterizaciones más conocidas dando particular relevancia al criterio que involucra la propiedad de homogeneidad por su particular simplificación. A su vez, las limitaciones que llevan a considerar nociones alternativas que facilitan el análisis o el diseño de control continuo en tiempo finito cuando la homogeneidad resulta restrictiva, ya sea en términos analíticos ---como en el caso en que se considera el fenómeno de saturación en las entradas--- o en los resultados prácticos. Finalmente, expondremos cómo tales herremientas analíticas han podido ser aplicadas para diseñar leyes de control  continuas que garantizan la estabilización global en tiempo finito de sistemas mecánicos con entradas acotadas.

Bio: Arturo Zavala Río recibió los grados de Ingeniero en Sistemas Electrónicos y Maestro en Ingeniería de Control del Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey, en 1989 y 1992, respectivamente, y el Diploma de Estudios Avanzados y el grado de Doctor, ambos en Control Automático, del Instituto Nacional Politécnico de Grenoble, Francia, en 1994 y 1997, respectivamente. Desde septiembre de 2002 es Investigador adscrito a la División de Matemáticas Aplicadas del Instituto Potosino de Investigación Científica y Tecnológica, actualmente con el nombramiento de Investigador Titular C. Es miembro del Sistema Nacional de Investigadores desde 1999, actualmente Nivel II. Sus áreas de interés se centran en la modelación, análisis y control de sistemas no-lineales, con énfasis particular en los sistemas de dinámica Euler-Lagrangiana.


©Todos los derechos reservados UANL 2017. Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo por escrito de la institución.

Document made with KompoZer